Quantum-inspired evolutionary algorithms: a survey and empirical study

نویسنده

  • Gexiang Zhang
چکیده

Quantum-inspired evolutionary algorithms, one of the three main research areas related to the complex interaction between quantum computing and evolutionary algorithms, are receiving renewed attention. A quantum-inspired evolutionary algorithm is a new evolutionary algorithm for a classical computer rather than for quantum mechanical hardware. This paper provides a unified framework and a comprehensive survey of recent work in this rapidly growing field. After introducing of the main concepts behind quantum-inspired evolutionary algorithms, we present the key ideas related to the multitude of quantum-inspired evolutionary algorithms, sketch the differences between them, survey theoretical developments and applications that range from combinatorial optimizations to numerical optimizations, and compare the advantages and limitations of these various methods. Finally, a small comparative study is conducted to evaluate the performances of different types of quantum-inspired evolutionary algorithms and conclusions are drawn about some of the most promising future research developments in this area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Survey of Quantum-Inspired Evolutionary Algorithms

This paper presents a concise survey of a new class of metaheuristics, drawing their inspiration from both: biological evolution and unitary evolution of quantum systems. In the first part of the paper, general concepts behind quantum-inspired evolutionary algorithms have been presented. In the second part, a state of the art of this field has been discussed and a literature review has been con...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Quantum Inspired Genetic Algorithms

|A novel evolutionary computing method | quantum inspired genetic algorithms | is introduced, where concepts and principles of quantum mechanics are used to inform and inspire more eecient evolutionary computing methods. The basic terminology of quantum mechanics is introduced before a comparison is made between a classical genetic algorithm and a quantum inspired method for the travelling sale...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Heuristics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011